https://doi.org/10.1016/j.rechem.2024.101674 ·
Journal: Results in Chemistry, 2024, p.101674
Publisher: Elsevier BV
Authors:
- Tharani Mohanasundram
- Nagarjuna Palathoti
- Neeru Dugar
- Anuj Kumar Singh
- Sayantan Pal
- Srikanth Jupudi
- Jawahar Natarajan
- Vasanth Raj Palanimuthu
- Raju Bairi
- Bhargav Bhongiri
- Rajgopal Kalirajan
- Vadivelan Ramachandran
Funder JSS Academy of Higher Education and Research
List of references
- Ramachandran, Nrf2 mediated heme oxygenase-1 activation contributes to diabetic wound healing – an overview, Drug Res. (Stuttg), № 72, с. 487
https://doi.org/10.1055/a-1899-8233 - V. Tallapaneni, D. Pamu, L. Mude, Dual-Drug Loaded Biomimetic Chitosan-Collagen Hybrid Nanocomposite Scaffolds for Ameliorating Potential Tissue Regeneration in Diabetic Wounds, bioRxiv. (2022). https://www.proquest.com/working-papers/dual-drug-loaded-biomimetic-chitosan-collagen/docview/2630554573/se-2%0Ahttps://www.biorxiv.org/content/10.1101/2022.02.16.480700v2.
https://doi.org/10.1101/2022.02.16.480700 - Karri, Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing, Int. J. Biol. Macromol., № 93, с. 1519
https://doi.org/10.1016/j.ijbiomac.2016.05.038 - Dries, Surgical wound healing and management, Shock, № 27, с. 707
https://doi.org/10.1097/01.shk.0000270191.80497.15 - Barakat, Limited treatment options for diabetic wounds: barriers to clinical translation despite therapeutic success in murine models, Adv. Wound Care, № 10, с. 436
https://doi.org/10.1089/wound.2020.1254 - Křížová, Isoflavones, Molecules, № 24
https://doi.org/10.3390/molecules24061076 - Hairi, The potential effects of isoflavones on nuclear receptor modulation in bone remodeling: A review, J. Appl. Pharm. Sci., № 13, с. 73
- Ramachandran, Isoflavones protective mechanisms against cardiovascular diseases, Int. J. Res. Pharm. Sci., № 11, с. 4670
https://doi.org/10.26452/ijrps.v11i3.2754 - Emmerson, Estrogen receptor-mediated signalling in female mice is locally activated in response to wounding, Mol. Cell. Endocrinol., № 375, с. 149
https://doi.org/10.1016/j.mce.2013.05.015 - E.B. Bolajoko, O.M. Akinosun, A.A. Khine, Hyperglycemia-induced oxidative stress in the development of diabetic foot ulcers, in: Diabetes Oxidative Stress Diet. Antioxidants, 2020: pp. 35–48. doi: 10.1016/B978-0-12-815776-3.00004-8.
https://doi.org/10.1016/B978-0-12-815776-3.00004-8 - Mu, Pyroptosis and inflammasomes in diabetic wound healing, Front. Endocrinol. (Lausanne), № 13
https://doi.org/10.3389/fendo.2022.950798 - Dong, Estrogen plays an important role by influencing the NLRP3 inflammasome, Biomed. Pharmacother., № 167
https://doi.org/10.1016/j.biopha.2023.115554 - Davison, Hormone replacement therapy: Current controversies, Clin. Endocrinol. (Oxf), № 58, с. 249
https://doi.org/10.1046/j.1365-2265.2003.01774.x - Toutain, Prevention of skin flap necrosis by estradiol involves reperfusion of a protected vascular network, Circ. Res., № 104, с. 245
https://doi.org/10.1161/CIRCRESAHA.108.182410 - Čoma, Molecular changes underlying genistein treatment of wound healing: A review, Curr. Issues Mol. Biol., № 43, с. 127
https://doi.org/10.3390/cimb43010011 - Ashworth, Polymorphisms spanning the 0N exon and promoter of the estrogen receptor-beta (ERβ) gene ESR2 are associated with venous ulceration, Clin. Genet., № 73, с. 55
https://doi.org/10.1111/j.1399-0004.2007.00927.x - Mude, Molecular insights in repurposing selective COX-2 inhibitor celecoxib against matrix metalloproteinases in potentiating delayed wound healing: a molecular docking and MMPB/SA based analysis of molecular dynamic simulations, J. Biomol. Struct. Dyn.
- Singh, Targeting lipoxygenase enzyme by flavonoids from Tadehagi triquetrum: a combined in silico and in vitro approach, Rev. Bras. Farmacogn., № 32, с. 484
https://doi.org/10.1007/s43450-022-00270-w - Smeriglio, Dietary phytochemicals and endrocrine-related activities: an update, mini-reviews, Med. Chem., № 18, с. 1382
- Kim, Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans, Antioxidants, № 10
- Tanwar, Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach, Eur. J. Med. Chem., № 213
https://doi.org/10.1016/j.ejmech.2020.113037 - Chintha, In-silico docking and molecular dynamic introspective study of multiple targets of AChE with Rivastigmine and NMDA receptors with Riluzole for Alzheimer’s disease, J. Biomol. Struct. Dyn.
https://doi.org/10.1080/07391102.2023.2167119 - Tallapaneni, Growth factor loaded thermo-responsive injectable hydrogel for enhancing diabetic wound healing, Gels., № 9
- Hajimiri, Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing, Drug Dev. Ind. Pharm., № 42, с. 707
https://doi.org/10.3109/03639045.2015.1075030 - Sánchez-Moreno, Methods used to evaluate the free radical scavenging activity in foods and biological systems, Food Sci. Technol. Int., № 8, с. 121
https://doi.org/10.1177/1082013202008003770 - Benkhaira, In vitro methods to study antioxidant and some biological activities of essential oils: A review, Biointerface Res. Appl. Chem., № 12, с. 3332
- Yamamoto, Measurement of glucose uptake in cultured cells, Curr. Protoc. Pharmacol., № 71, с. 12.14.1
https://doi.org/10.1002/0471141755.ph1214s71 - Chanon, Glucose uptake measurement and response to insulin stimulation in in vitro cultured human primary myotubes, J. Vis. Exp., № 2017
- Gulzar, Binding mechanism of caffeic acid and simvastatin to the integrin linked kinase for therapeutic implications: a comparative docking and MD simulation studies, J. Biomol. Struct. Dyn., № 37, с. 4327
https://doi.org/10.1080/07391102.2018.1546621 - Lu, OPLS4: Improving force field accuracy on challenging regimes of chemical space, J. Chem. Theory Comput., № 17, с. 4291
https://doi.org/10.1021/acs.jctc.1c00302 - Yuting, Flavonoids as superoxide scavengers and antioxidants, Free Radic. Biol. Med., № 9, с. 19
https://doi.org/10.1016/0891-5849(90)90045-K - Seyoum, Structure-radical scavenging activity relationships of flavonoids, Phytochemistry, № 67, с. 2058
https://doi.org/10.1016/j.phytochem.2006.07.002 - Burgess, Diabetic wound-healing science, Med., № 57
- Sanchez, Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review, Antioxidants, № 7
- Gupta, Adherence to topical dermatological therapy: Lessons from oral drug treatment, Br. J. Dermatol., № 161, с. 221
https://doi.org/10.1111/j.1365-2133.2009.09253.x - M.A. Hussain, M. Al-Omran, K. Salata, A. Sivaswamy, T.L. Forbes, N. Sattar, B. Aljabri, A. Kayssi, S. Verma, C. De Mestral, Population-based secular trends in lower-extremity amputation for diabetes and peripheral artery disease, in: CMAJ, 2019: pp. E955–E961. doi: 10.1503/cmaj.190134.
https://doi.org/10.1503/cmaj.190134 - Lai, Icaritin exhibits anti-inflammatory effects in the mouse peritoneal macrophages and peritonitis model, Int. Immunopharmacol., № 16, с. 41
https://doi.org/10.1016/j.intimp.2013.03.025 - Ma, Icariin attenuates hypoxia-induced oxidative stress and apoptosis in osteoblasts and preserves their osteogenic differentiation potential in vitro, Cell Prolif., № 47, с. 527
https://doi.org/10.1111/cpr.12147 - Zhang, Icaritin attenuates myocardial ischemia and reperfusion injury via anti-inflammatory and anti-oxidative stress effects in rats, Am. J. Chin. Med., № 43, с. 1083
https://doi.org/10.1142/S0192415X15500627 - Peng, The beneficial effect of Icaritin on osteoporotic bone is dependent on the treatment initiation timing in adult ovariectomized rats, Bone, № 55, с. 230
https://doi.org/10.1016/j.bone.2013.02.012 - Wu, Iciartin, a novel FASN inhibitor, exerts anti-melanoma activities through IGF-1R/STAT3 signaling, Oncotarget, № 7, с. 51251
https://doi.org/10.18632/oncotarget.9984
About this publication
Publication type | Журнальна стаття |
Number of citations | 0 |
Number of works in the list of references | 41 |
Journal indexed in Scopus | Yes |
Journal indexed in Web of Science | Yes |